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Abstract. Using the method of induced band representations of space groups, we have
performed a complete group-theory analysis of electron state symmetries in (GaAs)m(AlAs)n

superlattices grown along the [001] direction. The spin–orbit interaction has been taken into
account. The selection rules for both direct and phonon-assisted optical transitions have been
derived. Using both the results of our group-theory analysis and data on the various electronic-
structure calculations which have appeared in the literature, we predict some variations in the
optical transitions whenm and/orn are varied. We also propose optical experiments to decide
among the numerous and sometimes contradictory results of those band calculations.

1. Introduction

The semiconductor superlattices (SLs) (GaAs)m(AlAs)n[hkl] are a new class of artificially
grown crystals whose structure (i.e. a space groupG and an arrangement of atoms over the
Wyckoff positions in a primitive cell) depends on the growth direction [hkl] and numbers
of monolayers (m, n) of constituent materials.

For each direction of growth, these SLs constitute several single-crystal families
specified by different space groupsGl, G2, . . . , Gr . By definition, within each family,
the crystals have the same space groupGi but differ from each other by an arrangement of
atoms over the Wyckoff positions. Thus, from the crystallographic point of view, the SLs
with different numbers of monolayersm andn are distinct crystals, even those belonging
to the same family.

Such a dependence of the SL crystal structure on the numbers of monolayers influences
phonon and electron states in these crystals. The symmetry of phonon states and
the corresponding infrared and Raman spectra selection rules have been investigated
comprehensively for the (GaAs)m(AlAs)n [001] SLs during recent years [1–5]. However,
the symmetry of electron states and the corresponding optical selection rules in SLs have
not been analysed in detail up to now.

To study the optical properties of SLs one should know the complete information on their
crystal structure. When analysing the SL structure, we first adopt an approximation that the
atoms in SLs are on the sites of a zinc-blende lattice with lattice constanta being an average
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of the two lattice parameters of GaAs and AlAs. This can be done since the difference in
the lattice constants of GaAs and AlAs is less than 0.2%. Taking this approximation into
account the coordinates of all the atoms in the lattice are well defined. So one can determine
both the space group and the atomic arrangement over the Wyckoff positions for a SL with
arbitrary numbers of monolayersm andn.

For the [001] orientation of layers, the space groups have been determined in [6] and the
distribution of atoms in the primitive cell have been obtained in our previous papers [1, 2].
For other orientations the structure information is not sufficient. The space groups only
have been found for the [110] [7] and [111] [8] growth directions whereas the arrangement
of atoms over the Wyckoff positions in a primitive cell has not been analysed. No result,
according to our knowledge, has been published concerning the symmetry properties of the
electron states in SLs grown in the [110] and [111] directions.

The SLs can be considered as new crystals with an enlarged unit cell compared with
that of parent materials (GaAs and AlAs in our case). Nevertheless, the SL electron states
appear to ‘remember’ their genesis, i.e. from which band states of parent materials they
have arisen. Therefore, it is worth performing some preliminary symmetry analysis of SLs
based on the properties of bulk materials.

GaAs and AlAs single crystals have the zinc-blende structure (space group T2
d) with

very close lattice parameters. In both crystals, the top of the valence band is located at the
0 point in the Brillouin zone (BZ) of the fcc lattice whereas the bottom of the conduction
band is located respectively at the0 point for GaAs and at the X point for AlAs. The
energy in the conduction band at the L point is intermediate between those of the X and0

points in both crystals [9].
For the (GaAs)m(AlAs)n [001] SLs, in the reduced-zone approximation, the folding of

the bulk material BZ over the superlattice BZ (SLBZ) along thez-axis (growth direction)
puts the Xz point of the bulk material in correspondence with a point either at the centre
or at the surface of the SLBZ depending on whetherm + n is even or odd. (The Xx and
Xy points of the bulk BZ are always related to points at the SLBZ surface.) It is generally
admitted that the top of the valence band is located at the0 point of the SLBZ whereas the
position of the bottom of the conduction band in the SLBZ depends on the thicknesses of
the GaAs and AlAs slabs. This leads to two types of SL.

(i) If the eigenstate with the minimal energy in the conduction band originates from the
0 point in the GaAs BZ, it is located at the0 point of the SLBZ; the electrons and holes
are then localized in GaAs regions and the SL is type I.

(ii) If the eigenstate with the minimal energy originates from the Xz point in the AlAs
BZ, it is located at the0 point of the SLBZ ifm + n is even and at a point on the surface
of the SLBZ if m + n is odd. In both cases electrons are localized in AlAs regions, i.e. the
electrons and holes are spatially separated; in the former case the optical transition is direct
in k-space and indirect in real space and the SL is pseudodirect type II (moreover, it has
been claimed that the parity of the wavefunction in the conduction band under the change
of z into −z is that ofn [10]); in the latter case the transition is indirect in bothk- and real
space and the SL is type II. Last, if the eigenstate with the minimal energy originates from
the Xxy point in the AlAs BZ, it is located on the surface of the SLBZ and the electrons
are localized in AlAs regions; the transition is indirect in bothk- and real space and the
SL is type II.

Note that, for direct type I SLs, there are allowed optical transitions at the0 point.
When 0–0 transitions are allowed from symmetry in the pseudodirect SLs, they should
have a weak intensity since the overlap of electron and hole envelope functions is small.
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The type (I or II) of (GaAs)m(AlAs)n [001] SLs has been extensively studied by
different optical techniques: absorption [11], optically detected magnetic resonance [12],
photoluminescence under hydrostatic pressure [9], etc. For SLs withm = n, the estimated
values ofm at which the type I to type II transition takes place present discrepancies from
one author to another; often it is even claimed that the transition occurs betweenm = 10 and
m = 14. On the other hand, the electron-band structures of GaAs/AlAs short-period SLs
have been calculated using various methods. Most of the results converge to them = 8–13
interval for the type I to type II transition to occur whenn = m [9].

In this paper, we analyse the electron state symmetries at the symmetry points of the BZ
for the (GaAs)m(AlAs)n SLs grown along the [001] direction. Next, we derive the selection
rules for optical transitions in these materials. Finally, based on our group-theory results
and electronic-structure calculations made by other authors, we predict which lines could be
expected to be observed in polarized optical spectra. The results concerning the dependence
of a crystal structure on the numbers of monolayersm andn for the (GaAs)m(AlAs)n SLs
grown along the [110] and [111] directions as well as the symmetry analysis of electron
states and optical selection rules will be published in a separate paper.

2. Electron state symmetry

The crystal structures of typical representatives of the two different families of
(GaAs)m(AlAs)n SLs grown along the [001] direction are presented in figures 1 and 2.
The two families correspond to even and odd values ofm + n. The figures also show
the BZs for the corresponding space groups, D5

2d and D9
2d. The formulae giving the atomic

arrangements over the Wyckoff positions are presented in table 1 (see also [1] and [2]). Here,
the numbers preceding the chemical element symbols denote the number of such atoms at
the Wyckoff positions shown in parentheses. Analysing table 1 one can see that each of
the crystal families can be subdivided into several subfamilies specified by non-equivalent
types of atomic arrangement over the Wyckoff positions.

Table 1. Atomic arrangements over the Wyckoff positions in (GaAs)m(AlAs)n [001] SLs

Space group D52d (P 4̄m2), m + n = 2k, m 6 n

m = 2k + 1, n = 2s + 1 m = 2k, n = 2s

m = 4i + 1 m = 4i + 3 m = 4i + 1 m = 4i + 3
n = 4j + 3 n = 4j + 1 n = 4j + 1 n = 4j + 3 m + n = 4i m + n = 4i + 2

1Ga(1a) mGa(2g)
(m + n)As(2g) nAl(2g)

1As(1a)1Al(1d) 1Al(1c)

m−1
2 Ga(2f) m+1

2 Ga(2f) m−1
2 Ga(2f) m+1

2 Ga(2f) 1As(1d) 1As(1c)
m−1

2 Ga(2e) m−3
2 Ga(2e) m−1

2 Ga(2e) m−3
2 Ga(2e) m+n

2 As(2f)
(

m+n
2 − 1

)
As(2f)

n+1
2 Al(2f) n−1

2 Al(2f) n−1
2 Al(2f) n−3

2 Al(2f)
(

m+n
2 − 2

)
As(2e)

(
m+n

2 − 1
)
As(2e)

n−3
2 Al(2e) n−1

2 Al(2e) n−1
2 Al(2e) n+1

2 Al(2e)

Space group D92d(I 4̄m2), m + n = 2k + 1

m = 2k + 1, n = 2s m = 2k, n = 2s + 1

1Ga(1a) 1As(1c)nAl(2e) 1As(1a) 1Al(1c)mGa(2f)
(m − 1)Ga(2e) (m + n − 1)As(2f) (n − 1)Al(2f) (m + n − 1)As(2e)
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Figure 1. The crystal structures and corresponding BZs of (GaAs)2(AlAs)2 and (GaAs)1(AlAs)1

[001]-grown superlattices.

For the D5
2d crystal family, there are four SL subfamilies corresponding to odd numbers

of both GaAs and AlAs monolayers and two SL subfamilies with evenm andn. For the four
former subfamilies, high-symmetry sites (D2d—1a, 1c, and 1d) in the lattice are occupied by
metal (Me= Ga, Al) atoms, whereas all As atoms are in low-symmetry Wyckoff positions
(C2v—2e, 2f, and 2g). The difference between the four subfamilies is subtle and results
in the variations of occupation numbers of Wyckoff positions with the same site symmetry
by atoms of the same type. Thus, the period of atomic arrangements over the Wyckoff
positions is equal to four for bothm andn. For the two latter subfamilies, the Me and As
atoms interchange their sites, that is, high-symmetry positions are occupied by As atoms,
whereas all the metal atoms arrange at low-symmetry sites. In this case, the period of
atomic arrangements over the Wyckoff positions is equal to four form + n.

For the D9
2d crystal family, there are two subfamilies of SLs corresponding to either odd

numbers of GaAs and even numbers of AlAs monolayers orvice versa. Whenm is odd
andn is even, there is no Al atom in a D2d-symmetry position, whereas none of Ga atoms
is placed at a D2d-symmetry site whenm andn change the parities.

Knowing the space groups and atomic arrangements, one can determine the symmetry of
electron states in the (GaAs)m(AlAs)n SLs using the method of induced band representations
of space groups. The main concepts of this method are given elsewhere [2, 13–16]. It
allows one to establish a symmetry correspondence between extended (Bloch) and localized
(Wannier-type) one-electron states in crystals. The electron state symmetries for different
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Figure 2. The crystal structure and corresponding BZ of a (GaAs)1(AlAs)2 [001]-grown
superlattice.

SLs are presented in tables 2 and 3. These tables have the following structure. Columns 1–
6 contain the atomic arrangements over the Wyckoff positions (sites in direct space)
given in column 7 together with their coordinates (in units of translation vectors of the
crystallographic unit cell) and site symmetry groups. Column 8 contains the Mulliken
symbols of those irreducible representations (irreps) of the site symmetry groups for these
Wyckoff positions, according to which the localized one-electron wave functions transform,
as well as the symbols of double-valued irreps (denoted by a bar over the irrep symbol) in
the case where the spin–orbit interaction is taken into account.

We do not specify the explicit form of the localized functions. Their spatial distributions
within the primitive cell remain undefined in terms of the group theory. In the symmetry
analysis, only transformation properties of these functions are important, being described
by the irreps of the site symmetry group of corresponding atoms. It should be noted that
though the Wannier-type orbitals may differ from the corresponding atomic orbitals (s, p,
d, etc) they transform according to the same irreps of a site symmetry group.

The remaining columns of tables 2 and 3 give the labels of single- and double-valued
induced representations in thek-basis, with the symbols ofk-points (wave vectors), their
coordinates (in units of primitive translations of the reciprocal lattice), and their point groups
in rows 1–3 respectively, and the indices of small irreps of little groups in subsequent rows;
these determine the symmetries of electron band states (Bloch states). In these tables and
in each of the following ones, the labelling of the space groups irreps is that of [17], the
labelling of the point-group irreps is that of [18], and the site pointsq are indexed as
Wyckoff positions from [19].
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Table 2. Electron state symmetries in (GaAs)m(AlAs)n [001] SLs with the space group
D5

2d(P 4̄m2).

0 M A Z X R
m = 1 m = 2 m = 1 m = 1 m = 2 m = 3 D5

2d (000) (1
2

1
20) (1

2
1
2

1
2) (001

2) (01
20) (01

2
1
2)

n = 1 n = 2 n = 3 n = 5 n = 4 n = 3 (P 4̄m2) D2d D2d D2d D2d C2v C2v

1Ga 1As 1Ga 1Ga 1As 1Ga a1(s) 1 1 1 1 1 1
b2(pz) 2 2 2 2 1 1

1a e(px py ) 5 5 5 5 3, 4 3, 4
(000) ē1 6 6 6 6 5 5
D2d ē2 7 7 7 7 5 5

1Al — — 1Al 1As 1Al a1(s) 1 4 3 2 3 3
b2(pz) 2 3 4 1 3 3

1c e(px , py ) 5 5 5 5 1, 2 1, 2
( 1

2
1
2

1
2) ē1 6 7 6 7 5 5

D2d ē2 7 6 7 6 5 5

— 1As 1Al — — — a1(s) 1 1 2 2 1 1
b2(pz) 2 2 1 1 1 1

1d e(px ,py ) 5 5 5 5 3, 4 3, 4
(001

2) ē1 6 6 7 7 5 5
D2d ē2 7 7 6 6 5 5

— — — 2Al 2As 2Al a1(s;pz) 1, 2 1, 2 1, 2 1, 2 1, 1 1, 1
2e b2(py ) 5 5 5 5 3, 4 3, 4
(00z) b1(px ) 5 5 5 5 3, 4 3, 4
C2v ē 6, 7 6, 7 6, 7 6, 7 5, 5 5, 5

— 2As 2Al 2Al 2As 2Ga a1(s;pz) 1, 2 3, 4 3, 4 1, 2 3, 3 3, 3
2f b2(py ) 5 5 5 5 1, 2 1, 2
( 1

2
1
2z) b1(px ) 5 5 5 5 1, 2 1, 2

C2v ē 6, 7 6, 7 6, 7 6, 7 5, 5 5, 5

2As 2Al 4As 6As 4Al 6As a1(s;pz) 1, 2 5 5 1, 2 1, 3 1, 3
2Ga 2Ga 2g b2(py ) 5 1, 2 1, 2 5 1, 4 1, 4

(01
2z) b1(px ) 5 3, 4 3, 4 5 2, 3 2, 3

C2v ē 6, 7 6, 7 6, 7 6, 7 5, 5 5, 5

We limit ourselves to the s and p atomic-like localized states (one s state and three p
states per atom) since just these functions form the uppermost valence-band states and the
lowest conduction-band states and, therefore, determine the interband optical transitions.
Nevertheless, to describe the lower valence-band states and upper conduction-band ones,
the d states should be also taken into consideration. This could be done using a similar
procedure.

From tables 2 and 3 one can easily write down the symmetry of the electron states at
symmetry points of the SLBZ and determine which localized states and which atoms in a
primitive cell contribute to them.

For example, in the (GaAs)1(AlAs)1 SL (in a short notation, the (1× 1) SL), the s-
atomic-like Wannier-type orbital corresponding to the Al atom in the 1c Wyckoff position
(for short, the s orbital of Al) induces non-degenerate Bloch states01, M4, A3, Z2, X3, and
R3 (see table 2). Thus, 1 in the column0 means small irrep01, 4 in the column M means
M4, etc. We can also see that01 states are induced by s orbitals of Ga and Al as well as
by s and pz orbitals of As,02 states are formed by pz orbitals of Ga and Al and by s and
pz orbitals of As, and, finally05 states are formed by px and py orbitals of Ga, Al, and As
atoms. Thus, at the0 point we have four01, four 02, and four05 Bloch states resulting
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Table 3. Electron state symmetries in (GaAs)m(AlAs)n [001] SLs with the space group
D9

2d(I 4̄m2) (co-rep: N3 + N4).

0 M X P N
m = 1 m = 2 m = 1 m = 1 m = 2 m = 3 D9

2d (000) (1
2

1
2 − 1

2) (001
2) ( 1

4
1
4

1
4) (01

20)
n = 2 n = 3 n = 4 n = 6 n = 5 n = 6 (I 4̄m2) D2d D2d D2 S4 Cs

1Ga 1As 1Ga 1Ga 1As 1Ga a1(s) 1 1 1 1 1
b2(pz) 2 2 2 2 1

1a e(px py ) 5 5 3, 4 3, 4 1, 2
(000) ē1 6 6 5 5, 7 3, 4
D2d ē2 7 7 5 6, 8 3, 4

1Al 1Al 1As 1As 1Al 1As a1(s) 1 2 3 4 1
b2(pz) 2 1 4 3 1

1c e(px , py ) 5 5 1, 2 1, 2 1, 2
(01

2
1
4) ē1 6 7 5 6, 7 3, 4

D2d ē2 7 6 5 5, 8 3, 4

2Al 4As 4Al 6Al 6As 4Al a1(s;pz) 1, 2 1, 2 1, 2 1, 2 1, 1
2Ga 2e b2(py ) 5 5 3, 4 3, 4 1, 2

(00z) b1(px ) 5 5 3, 4 3, 4 1, 2
C2v ē 6, 7 6, 7 5, 5 5, 6, 7, 8 3, 3, 4, 4

2As 2Al 4As 6As 4Al 6As a1(s;pz) 1, 2 1, 2 3, 4 3, 4 1, 1
2Ga 2Ga 2f b2(py ) 5 5 1, 2 1, 2 1, 2

(01
2z) b1(px ) 5 5 1, 2 1, 2 1, 2

C2v ē 6, 7 6, 7 5, 5 5, 6, 7, 8 3, 3, 4, 4

from s and p localized states (Ga, Al, and As atoms). We can conclude, for example, that the
Bloch states induced by px and py orbitals of Ga, Al, and As atoms do not mix at the0 point
with the states induced by s and pz orbitals since they have different symmetries. These
results could significantly simplify the numerical calculations of electron-band structures of
these materials since for each particular band state we could limit the number of Wannier-
type orbitals that should be taken into account. This is especially important if the number
of atoms per primitive cell is very large, and that is the case for most SLs. For example, for
the (1× 1) SL one can see that only s orbitals of Al and px orbitals of As contribute to the
states M4. Our group-theory results agree with the numerical calculations of contributions
of different orbitals to SL band states made in [20] (see table IV therein). For example, for
the M4 state with energy of 3.14 eV the following relative contributions of different atomic
orbitals (i.e. the percentages of s and p states within the atomic spheres for each type of
atom) were obtained in [20]: Ga, s—0, p—0; Al, s—19.9, p—0; As, s—0, p—7.3. This
agrees with the symmetry-analysis results given in table 2. Note that the authors of [20] do
not distinguish the contributions of different p states as we do.

Analysing the results given in tables 2 and 3, one can formulate in terms of site symmetry
the definition of type-I and type-II SLs. The difference between these two types is the
following: in the type-I SLs, the crystalline orbitals corresponding to the top of the valence
band and to the bottom of the conduction band should include orbitals of atoms belonging
to the layers of the same type (GaAs or AlAs). In the type-II SLs, these crystalline orbitals
should not. In the present description, the As atoms lying at the interfaces have obviously
to be considered as belonging to both types of layer. The site-symmetry method therefore
allows one to establish qualitatively localizations of different crystalline orbitals.

Below, we speak about localization in the sense that the atoms from layers of only one
type (GaAs or AlAs) contribute to a particular crystalline state. For example, for the (1×1)
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SL (see table 2), the Bloch states01, M1, A1, Z1, X1, and R1 induced by s orbitals of Ga
atoms are periodically localized in GaAs regions whereas the Bloch states01, M4, A3, Z2,
X3, and R3 induced by s orbitals of Al atoms are periodically localized in AlAs regions.
For the (2× 2) SL, Bloch states01, M1, A1, Z1, X1, and R1, which are induced by As
atoms lying between Ga planes, are also periodically localized in the GaAs regions though
having another energy. Besides, the s and pz states of Ga and Al atoms contribute to the
composite Bloch states with the same symmetries (01, 02), M5, A5, (Z1,Z2), (X1,X3), and
(R1,R3).

In many papers the problem of0–X mixing is studied both theoretically and
experimentally (for references, see e.g. [9], [10] and [21]). When there is no external
perturbation, two states9i and 9j mix if they have the same energy and if their overlap
integral is not equal to zero:〈9i |9j 〉 6= 0. There is therefore no mixing if the symmetries
of states9i and9j are different.

In the reduced-zone approximation, one uses bulk wave functions in both GaAs and
AlAs slabs. In the case of the0–Xz mixing, the conduction-band wave function has the0

symmetry in the GaAs slabs and the Xz symmetry in the AlAs ones. When both parts of the
wave function correspond to the same energy (the confinement energy being included), the
SL potential introduced with interface discontinuities lifts this degeneracy if it is allowed
from parity. The perturbed wave functions are then linear combinations of the former
0 and Xz wave functions and no longer have any defined symmetry [22]. In our site-
symmetry analysis, the exact symmetries of the wave functions are provided, and only a
further perturbation potential could mix the exact eigenfunctions. Such a potential could
arise, for example, from impurities, defects, applied fields, strains, etc.

Finally, if we take the spin–orbit interaction into consideration, the s, p, etc orbitals are
replaced by the|J, mJ 〉 orbitals whereJ and mJ are the total angular momentum and its
projection. The corresponding double-valued induced representations are given in tables 2
and 3. For example, for the (1× 1) SL, the s-derived| 1

2, ± 1
2〉 and p-derived| 3

2, ± 3
2〉

states localized at the Ga positions transform according to double-valued irrepē1 whereas
p-derived ones| 3

2± 1
2〉 and| 1

2± 1
2〉 transform according tōe2. As a result, the 401+402+405

states will become the 806 + 807 ones.

3. Optical transition selection rules

The selection rules for optical transitions follow from the symmetry restrictions imposed on
matrix elements of transitions from an initial (i) electron state to a final (f ) one under the
action of the perturbative operatorW . In terms of group theory, for a system having the
space groupG, the optical transition matrix elements do not vanish due to symmetry if the
following Kronecker products of reps ofG contain the identity irrep

(Df )∗ × DW × Di ⊃ 01. (1)

HereDi andDf are the irreps of the space groupG according to which the initial and final
electron states are transformed,DW is the rep according to which the perturbative operator
W is transformed and01 is the identity irrep of the groupG.

In light absorption processes, the perturbative operator isW ∝ (e ·p) exp(ik ·r), where
e andk are the polarization and wave vector of light, respectively, andp is the momentum
operator of an electron. For the light frequency range the conditionkia � 1 (wherea is the
lattice parameter) is satisfied; that leads to an approximation called the dipole approximation:

W ∝ (e · p). (2)
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Thus, the perturbative operatorW transforms according to the vector representationDν of
the space groupG. Hence, the transitions are allowed between those pairs of electron states
Df andDi which obey the condition

(Df )∗ × Di ∩ Dν 6= 0. (3)

Since the reps according to which the perturbative operatorW is transformed correspond to
the zero wave vector, only those combinations of electron states for which the Kronecker
product contains the rep withk = 0 can be allowed.

In tables 4 and 5, for the space groups D5
2d and D9

2d respectively, we present thek = 0
parts of Kronecker products of irreps corresponding to various combinations of initial and
final electron states at the symmetry points of SLBZ. For example, X1 ×X4 = 05 +M5, and
+ in the column05 means that this irrep forms part of the direct product. The transitions are
allowed between those pairs of states for which Kronecker products have irreps in common
with the vector representation. For the space groups D5

2d and D9
2d, the vector representation

is Dν = 02(z) + 05(x, y). Thus, the optical transition between the states X1 and X4—
taken above as an example—is allowed in thex andy polarizations and forbidden in thez
polarization.

Table 4. Selection rules for direct optical transitions in (GaAs)m(AlAs)n [001] SLs with the
space group D52d.

01 02 03 04 05 Allowed polarizations

Single-valued irreps

D = 0, M, A, Z
Di × Di (i = 1–4) + forbidden
D1 × D2, D3 × D4 + z

D1 × D3, D2 × D4 + forbidden
D1 × D4, D2 × D3 + forbidden
Di × D5 (i = 1–4) + x, y

D5 × D5 + + + + z

D = X, R
Di × Di (i = 1–4) + + z

D1 × D2, D3 × D4 + + forbidden
Di × Dj (i = 1, 2; j = 3, 4) + x, y

Double-valued irreps (with spin–orbit interaction included)

D = 0, M, A, Z
Di × Di (i = 6, 7) + + + x, y

D6 × D7 + + + x, y; z

D = X, R
D5 × D5 + + + + + x, y; z

When the spin–orbit interaction is taken into account, the products of double-valued
irreps should be considered. The symmetry correspondence between the Bloch states which
transform according to single-valued irreps (without spin–orbit coupling) and those which
transform according to the double-valued irreps (with spin–orbit coupling) can be obtained
as follows. The Bloch stateDl(l = s, p) corresponds to the states which transform according
to the double-valued representationD̄J = Dl × D̄1/2 whereD̄1/2 is the double-valued irrep
according to which the spinor function is transformed. For the space groups D5

2d and D9
2d,

the spinor function is transformed according toD̄1/2 = ē1. Decomposing the corresponding
direct products of coordinate and spinor parts of the one-electron wave function, we obtain
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Table 5. Selection rules for direct optical transitions in (GaAs)m(AlAs)n [001] SLs with the
space group D92d.

01 02 03 04 05 Allowed polarizations

Single-valued irreps

D = 0, M
Di × Di (i = 1–4) + forbidden
D1 × D2, D3 × D4 + z

D1 × D3, D2 × D4 + forbidden
D1 × D4, D2 × D3 + forbidden
D1 × D5 (i = 1–4) + x, y

D5 × D5 + + + + z

Xi × Xi (i = 1–4) + + forbidden
X1 × X2, X3 × X4 + + z

Xi × Xj (i = 1, 2; j = 3, 4) + x, y

P1 × P1, P2 × P2 + + forbidden
P3 × P3, P4 × P4 + + forbidden
P1 × P2, P3 × P4 + + z

Pi × Pj (i = 1, 2; j = 3, 4) + x, y

Ni × Ni (i = 1, 2) + + + x, y; z

N1 × N2 + + + x, y

Double-valued irreps (with spin–orbit interaction included)

0i × 0i (i = 6, 7) + + + x, y

06 × 07 + + + x, y; z

Mi × Mi (i = 6, 7) + + + x, y

M6 × M7 + + + x, y; z

X5 × X5 + + + + + x, y; z

Pi × Pi (i = 5–8) + + forbidden
P5 × P6, P7 × P8 + + z

Pi × Pj (i = 5, 6; j = 7, 8) + x, y

Ni × Ni (i = 3, 4) + + + x, y

N3 × N4 + + + x, y; z

the set of states into whichDl transforms when the spin–orbit interaction is included. At
the0 point of the BZ, the symmetry correspondence is01 → 06, 02 → 07, 05 → 06 +07,
and at the M point M1 → M6, M2 → M7, M3 → M6, M4 → M7, M5 → M6 + M7.

As a result, we obtain a relation between the selection rules when the spin–orbit
interaction is taken into account (lower parts of tables 4 and 5) and those when it is not
(upper parts). It can be seen that some forbidden transitions become allowed when the
spin–orbit interaction is taken into account (table 6).

Besides direct optical transitions, the phonon-assisted ones may be of importance. The
phonon-assisted optical transitions are allowed between those initial and final electron states
belonging to different points of the BZ which obey the following conditions:

(Dvirt )∗ × Di ∩ Dν 6= 0 (Dvirt )∗ × Dph × Df ⊃ 01 (4a)

where Dvirt and Dph are the irreps according to which the virtual electron and phonon
state are transformed. In the case (4a), the virtual electron state belongs to the same wave
vector as an initial state. Other transitions are also possible, with the virtual electron state
belonging to the same wave vector as a final state. In the latter case, the states obey the
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Table 6. The modification of selection rules for direct optical transitions when including spin–
orbit interaction (space groups D5

2d and D9
2d). The labels of both the irreps and additional light

polarizations (x, y, or z) in parentheses refer to the case where spin–orbit coupling is taken into
account.

Conduction-band states

01(06) 02(07) 05(06) 05(07)

Valence-band states 01(06) (x, y) (x, y)z x, y x, y(z)

02(07) (x, y)z (x, y) x, y(z) x, y

05(06) x, y x, y(z) (x, y) (x, y)z

05(07) x, y(z) x, y (x, y)z (x, y)

following conditions:

(Di)∗ × Dph × Dvirt ⊃ 01 (Df )∗ × Dvirt ∩ Dν 6= 0. (4b)

For the short-period SLs under consideration, there is a consensus among all the published
calculations that the uppermost valence-band states at the0 point are about 1 eV higher
in energy than the states at the other symmetry points [20, 23–27]. Therefore, due to such
a large difference in energy, one can neglect the transitions via the virtual valence-band
states at symmetry points withk 6= 0. By doing this, one has to consider only the (4a)
transitions for the optical absorption spectra and the (4b) ones for the luminescence spectra.
Transitions involving optical phonons withk = 0 (the 01, 02, and05 optical phonons) are
also to be considered in the case where two conduction bands and/or two valence bands
have energies close to one other at the0 point.

Using tables 4 and 5, one can obtain the selection rules for phonon-assisted optical
transitions. Such rules for the D5

2d and D9
2d space groups are presented in tables 7 and 8. If

one takes into consideration the spin–orbit interaction, the rules are modified (tables 9 and
10 for the D5

2d and D9
2d space groups, respectively). In addition, in tables 9 and 10 those

transitions involving the optical0 phonons are included, which obey the (4b) conditions.
Note that one can practically always find appropriate phonons for the indirect transitions.
These transitions are allowed between those initial and virtual states (in case (4a)) or virtual
and final ones (in case (4b)) for which Kronecker products have irreps in common with the
vector representation, that is to say, for which the zero-phonon transitions are allowed.

Thus, a particular interband transition can be allowed either completely or in certain
polarizations due to the appropriate symmetries of involved states, and/or due to the spin–
orbit interaction, and/or due to the electron–phonon interaction. In the two latter cases,
its oscillator strength will be weak. It is worth noting that the oscillator strength is also
determined by atomic arrangement in the Wyckoff positions. The higher the occupation
number of a position, the greater the strength of a transition involving band states induced
by the atoms in this position. This can be considered in terms of the ‘bulk genesis’ of some
bands when the number of GaAs and/or AlAs layers is rather high, that is to say when the
occupation numbers of some Wyckoff positions are much larger than those of others (by an
order of magnitude or more).

Of course, the most important ones are the transitions between the uppermost states
in the valence band and the lowest states in the conduction band. Group-theory analysis
alone does not permit us to determine even the relative energy positions of different states.
It is possible only to assume that relative energy positions of different band states could
change whenm and n are varied. This is due to the fact that distinct localized functions
contribute to the band states with the same symmetry in different SLs. For example, one
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Table 7. Selection rules for phonon-assisted optical transitions in (GaAs)m(AlAs)n [001] SLs
with the space group D52d. (neglecting the spin–orbit interaction).

Initial state Virtual state Final state Allowed
(valence band) (conduction band) (conduction band) Assisting phononsa polarizations

01 01 any any forbidden

02 Di Dj D = 0, M, A, Z
(i, j) = (1, 2); (2, 1); (3, 4); (4, 3); (5, 5) z

Di Di D = R, X

05 D5 D1 + D2 + D3 + D4 x, y

Di (1 6= 5) D5 D = 0, M, A, Z

Di (i = 1, 2) D3 + D4

Di (i = 3, 4) D1 + D2 D = X, R

02 01 Di Di D = 0, M, R, X, A, Z z

02 any any forbidden

05 D5 D1 + D2 + D3 + D4 x, y

Di (i 6= 5) D5 D = 0, M, A, Z

Di (i = 1, 2) D3 + D4

Di (i = 3, 4) D1 + D2 D = X, R

05 01 Di Di D = 0, M, R, X, A, Z x, y

02 Di Dj D = 0, M, A, Z x, y

(i, j) = (1, 2); (2, 1); (3, 4); (4, 3); (5, 5)

Di Di D = R, X

05 D5 D1 + D2 + D3 + D4 z

Di (i 6= 5) D5 D = 0, M, A, Z

Di (i = 1, 2) D3 + D4

Di (i = 3, 4) D1 + D2 D = X, R

a The 03, 04, Z3 and Z4 phonons are absent (see e.g. [2]).

can see for the (2× 2) and (1× 3) SLs that As and Me (Ga and Al) atoms interchange their
positions, i.e. in the (2× 2) SL the a, d, and f Wyckoff positions are occupied by As atoms
and g positions by Ga and Al atoms whereas in the (1× 1) SL the As atoms replace Me
atoms and, in turn, Me atoms replace As. It is clear that the number of band states with
a particular symmetry depends completely on which Wyckoff positions are occupied and
which not whereas the energies of these states depend on the chemical nature of elements
that occupy these positions. Such rearrangement of atoms over the Wyckoff positions as
for (1 × 1) and (2× 2) SLs will ultimately result in relative shifts of band states on the
energy scale. This is a qualitative picture of this effect. However, some predictions could
be made only by comparison with the band-structure calculations [20, 23–27] (see below).

4. Discussion

There are many contradictions in the results of electronic-structure calculations given by
different authors [20, 23–27]. Therefore, it is worth giving a comparative analysis of
different methods presently used because several review papers devoted to this problem
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Table 8. Selection rules for phonon-assisted optical transitions in (GaAs)m(AlAs)n [001] SLs
with the space group D92d (neglecting the spin–orbit interaction).

Initial state Virtual state Final state
(valence band) (conduction band) (conduction band) Assisting phonons Allowed polarizations

0i (i = 1, 2) 0i (i = 1, 2) any any forbidden

01 02 Di Dj D = 0, M z

(i, j) = (1, 2); (2, 1); (5, 5)

Li Lj L = X, P
(i, j) = (1, 2); (2, 1); (3, 4); (4, 3)

Ni (i = 1, 2) Ni

02 01 Di Di D = 0, Ma, X, P, N z

0i (i = 1, 2) 05 D5 D1 + D2 x, y

Di (i = 1, 2) D5 D = 0, M
Li (i = 1, 2) L3 + L4 L = X, P
Li (i = 3, 4) L1 + L2

Ni (i = 1, 2) N1 + N2

05 01 Di Di D = 0, Ma, X, P, N x, y

02 Di Dj D = 0, M x, y

(i, j) = (1, 2); (2, 1); (5, 5)

Li Lj L = X, P
(i, j) = (1, 2); (2, 1); (3, 4); (4, 3)

Ni (i = 1, 2) Ni

05 D5 D1 + D2 z

Di (i = 1, 2) D5 D = 0, M
Li (i = 1, 2) L3 + L4 L = X, P
Li (i = 3, 4) L1 + L2

Ni (i = 1, 2) N1 + N2

a The 03, 04, M3, and M4 phonons are absent (see e.g. [2]).

(see, e.g., [10], [21] and [28]) did not treat short-period SLs in a completely satisfactory
way.

We may divide all the approaches used into the ones based on the properties of
constituent compounds and those dealing with the SL as a new crystal.

(i) The approaches of the first type are called ‘engineering methods’ [21] or ‘boundary-
condition approaches’ [28]. The most frequently used envelope-function method [29] within
the Kane–Luttinger model [30] considers that each GaAs and AlAs slab has a band structure
close to that of the corresponding bulk crystals and that the band structures of constituent
crystals conjugate at interface regions. These approaches can satisfactorily describe only
SLs with not too short periods since in the interface region the band description is not valid
at all [31].

(ii) The approaches of the second type are called ‘first-principles’ or ‘supercell’ ones
and can be applied for both SLs and usual bulk GaAs and AlAs crystals [32]. Only
these approaches could be applied to the very short-period SLs. All the first-principles
methods use the band approximation. These methods can be classified according to the
choice of crystal potential, which is the same for all the electrons of the crystal (method
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Table 9. Selection rules for the light absorption in (GaAs)m(AlAs)n [001] SLs with the space
group D5

2d (with account of spin–orbit interaction). The labelsv andc denote the valence-band
and conduction-band virtual states, respectively.i = 6, 7; j = 13− i.

Initial state Final state Allowed
(valence band) Virtual state (conduction band) Assisting phonons polarizations

0i direct 0i x, y

transitions 0j x, y; z

0i 0i,c D5 D1 + D2 + D3 + D4 D = R, X x, y

Di D1 + D5 D = 0, Z
Dj D2 + D5 D = 0, Z
Di D1 + D3 + D5 D = M, A
Dj D2 + D4 + D5 D = M, A

0i 0j,c D5 D1 + D2 + D3 + D4 D = R, X x, y, ; z

Di D2 + D5 D = 0, Z
Dj D1 + D5 D = 0, Z
Di D2 + D4 + D5 D = M, A
Dj D1 + D3 + D5 D = M, A

0i 0i,v 0i 01 + 05 x, y

0i 0i,v 0j 01 + 05 x, y; z

0i 0j,v 0i 02 + 05 x, y; z

0i 0j,v 0j 02 + 05 x, y

of pseudopotential; local density approximation, LDA; linear muffin-tin-orbital method,
LMTO; etc) and according to the choice of basis functions (LCAO or tight-binding;
orthogonalized plane waves, OPW; Wannier functions; linearized augmented plane waves,
LAPW; etc). Most of them are self-consistent, the form of potential being corrected by an
iteration procedure. By analysing these methods one should bear in mind that, if the choice
of potential corresponds to different physical models,the difference between LCAO, OPW,
or LAPW methods lies in the different choice of basis functions for the expansion of the
one-electron eigenfunction. These are atomic orbitals in LCAO, plane waves in OPW, etc.
The Wannier function method involves the orbitals constructed from the atomic orbitals of
all atoms in the primitive cell.

The calculations of electron-band structures of short-period SLs were performed within
both engineering methods (for references see e.g. [20], [21] and [28]) and first-principles
approaches [20, 23–27]. We shall try to apply our group-theory results to the recent first-
principles band-structure calculations presented in [20], [26] and [27] (LDA), [23] and [25]
(pseudopotential), and [24] (LMTO). Though some trends of all the calculations coincide, the
comparison of our results with the data of calculations is hindered by the lack of complete
symmetry assignment of energy bands in the latter, except for [20] and [26], where the
symmetries of uppermost valence-band states and lowest conduction-band ones are given
for every SL. The spin–orbit interaction was taken into account only in [23] and [24].

For every short-period SL, the results approximately coincide when the upper valence-
band states are considered (the results are summarized in figure 3), the uppermost valence-
band state being06. The next one has the07 symmetry. The separations between these
states are11 = 21 meV [24] for the (1× 1) SL, and12 = 12 meV [24] for the (2× 2)
SL. According to the evaluations of [23] and [24],1 is approximately the same for all
the short-period SLs, varying in the range of 0.1–0.2 eV. The spin–orbit splitting between
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Table 10. Selection rules for the light absorption in (GaAs)m(AlAs)n [001] SLs with the space
group D9

2d (with account of spin–orbit interaction). The labelsv andc denote the valence-band
and conduction-band virtual states, respectively.i = 6, 7; j = 13− i.

Initial state Final state Allowed
(valence band) Virtual state (conduction band) Assisting phonons polarizations

0i direct 0i x, y

transitions 0j x, y; z

0i 0i,c Di D1 + D5 D = 0, M x, y

Dj D2 + D5 D = 0, M
N3, N4 N1 + N2

X5 X1 + X2 + X3 + X4

Pi−1 P1 + P3

Pj−1 P2 + P4

Pi+1 P1 + P4

Pj+1 P2 + P3

0i 0j,c Dj D1 + D5 D = 0, M x, y; z

Di D2 + D5 D = 0, M
N3, N4 N1 + N2

X5 X1 + X2 + X3 + X4

Pi−1 P2 + P4

Pj−1 P1 + P3

Pi+1 P2 + P3

Pj+1 P1 + P4

0i 0i,v 0i 01 + 05 x, y

0i 0i,v 0j 01 + 05 x, y; z

0i 0j,v 0i 02 + 05 x, y; z

0i 0j,v 0j 02 + 05 x, y

the two (06 and07) band states and the lower07 one is approximately the same as in the
case of bulk GaAs, (0.34± 0.02) eV [24]. When neglecting the spin–orbit interaction, the
uppermost states are05 and02 (or 05v and04v in the notation of [20], [23] and [26]) with
the gap between them being11 = 50 meV,12 = 20 meV [20] or even less [23]. Therefore,
upon including the spin–orbit interaction, the valence-band state06 can be considered as
derived from the05 one (section 3), and the07 state as derived from both02 and05 states,
provided that the contributions of the remote upper states can be neglected.

The (1×1) SL has an indirect gap according to most of the calculations, the conduction-
band minimum being at the R point of the SLBZ (the R1 state that corresponds to the R5

state when spin–orbit interaction is included). The calculated band gap is equal to 1.88 eV
[20], 1.69 eV [24], 1.85 eV [26], and 1.93 eV [27]. Another minimum is at the M point
(the M5 state). It lies at 2.10 eV [20], 1.92 eV [25], 2.13 eV [26], or 2.12 eV [27]. At
the0 point, the lowest conduction-band state lies higher than the R1 state by 0.29 eV [20],
0.24 eV [24], 0.26 eV [23], or 0.09 eV [27].

There are essential contradictions between the results of the calculations concerning the
ordering in energy of the conduction bands at the0 point. This results in different optical
spectra to be expected. According to [20] and [23] in a (1× 1) SL, the01 state is higher
than the02 state by 10 meV [20] or 300 meV [23]. In [26] a different order was obtained,
the lowest conduction-band state being01 rather than02 (the latter is 120 meV higher).
Unfortunately, none of the calculations takes into consideration the spin–orbit interaction.
Since the single-valued representations01 and02 correspond, respectively, to the double-
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Figure 3. A schematic band-structure diagram of short-period (GaAs)m(AlAs)n [001] SLs.

valued ones06 and07, it means that the different calculations lead to opposite conclusions
concerning the symmetry of the lowest conduction-band0 state (06 or 07). Besides, the
spin–orbit interaction-induced mixing with lower-lying states may induce energy shifts of
the states. In [24], the lowest state at the0 point in a (1× 1) SL is supposed to be06 as
in GaAs and AlAs bulk crystals but without proof of this statement.

This is why we consider two possible energy-level diagrams in the case of (1× 1) SL
(figure 4) depending on whether the06 or the 07 conduction-band state is lower. If the
lowest conduction-band state has the07 symmetry, the direct transition with the lowest
energy is allowed in every polarization. The two next transitions are forbidden in thez

polarization, and, finally, the fourth direct transition with the highest energy is allowed in
every polarization. In contrast, if that band state has the06 symmetry, the first and fourth
direct transitions are forbidden in thez polarization, the two others being allowed. In both
cases, the transition between the06 valence-band state (derived from the05 one) and the07

conduction-band state (derived from the02 one) is allowed in thez polarization only on the
strength of the spin–orbit interaction, whereas the transition between the07 valence-band
state (originating from both the02 and05 ones) and the06 conduction-band state (derived
from the01 one) is completely allowed (cf table 6). Polarized-absorption experiments could
therefore allow us to determine the order of the states.

The phonon-assisted transitions could also provide additional information about the
band structure of the (1× 1) SL. As a matter of fact, the indirect optical absorption edge
corresponds to the transition into the R conduction-band state and is 0.2–0.3 eV lower than
the direct one. This should be separated from the so-called ‘indirect’ transitions that may
appear due to breaking of the wave-vector-conservation rule by defects, disorder, impurities,
interface roughness, etc in actual SLs. Since, at the centre of the BZ, the gap between two
uppermost valence-band states is small, it may lead to the appearance of rather weak0-
phonon-assisted transitions in polarized spectra at the energy positions of forbidden direct
transitions. For example, in the case of the uppermost valence-band state and the lowest
conduction-band one having the same symmetry06 (the right part of figure 4), the direct
transition is forbidden in thez polarization whereas the (02 +05)-phonon-assisted transition
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Figure 4. The possible energy-level diagram and dipole-allowed (solid lines) and phonon-
assisted (dashed lines) optical transitions in the (GaAs)1(AlAs)1 [001] SL.

with the same energy is allowed. Moreover, there exist two possible transitions involving
either the virtual07 valence-band state or the virtual07 conduction-band one (cf table 9). It
can be manifest in both absorption and luminescence polarized spectra. One should note that
the fine structure of the phonon-assisted transitions is determined not only by the electronic
structure but also by the peculiarities of the phonon density of states at the corresponding
point of the BZ (the maximal phonon energy is about 50 meV [33]).

The contradictions between the calculations are important in the case of the (2× 2)
SL. The authors of [20] have obtained that the (2× 2) SL has a direct gap with the lowest
conduction-band state01 (01c in their notation) at 2.02 eV, the M4 state lying 40 meV higher,
and the next01 state lying 210 meV higher. In [24], the lowest state is06 (the spin–orbit
interaction was taken into account) at 2.03 eV. In [25] an M state is also 40 meV higher
than the lowest0 state lying at 1.85 eV. In [26], a different order of the conduction-band
states was obtained. According to the calculations of [26], the conduction-band minimum
is at the M point of the SLBZ (M4 state), so this SL has an indirect gap as well as the
(1 × 1) SL. At the0 point, the lowest conduction-band state is01 (this corresponds to the
results of [20]) but the next01 state is only 50 meV higher. According to [27], the energy
positions of conduction-band minima at the0 and M points coincide (2.10 eV). Thus, all
the calculations give a small difference in energy positions of the lowest01 (06) and M4

(M7 with spin–orbit interaction included) states in the case of the (2× 2) SL.
On analysing a number of experimental data, the authors of [9] and [10] conclude that,

for this SL as well as for every (GaAs)m(AlAs)n [001]-grown SL with 1< m, n < 4,
the conduction-band minimum lies at the M point of the SLBZ (folded Xxy state in their
terminology), a0 state (folded Xz state) being some tens of meV higher. The authors of
[10] note a possible role of the interchange of Ga and Al atoms across the interface, which
may result in the essential lowering of the M-state energy.

The calculations give that, for the (2× 2) SL, the lowest conduction-band states at
the centre of the BZ are the01 states, the nearest non-01 state lying as far as 0.5 eV
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higher (a02 state). Provided that the spin–orbit interaction-induced mixing with the remote
states is negligible, one can conclude that the lowest conduction-band0 states have the06

symmetries. The direct optical transition with the lowest energy is then forbidden in the
z polarization, as well as the next one involving the higher-lying06 state. At the same
time, the transitions between the07 valence-band state and06 conduction-band ones are
completely allowed. The energy-level diagram will be similar to that shown in figure 5. As
in the case of the (1× 1) SL, there exist0-phonon-assisted transitions that make it possible
to observe the lowest-energy0–0 optical transition in thez polarization as well. Phonon-
assisted indirect optical0–M transitions may also be observed; these are weakly allowed
in every polarization. Therefore, only a study of the fine structure of the light-absorption
spectra of high-quality SLs could allow us to establish the real picture of the interband
transitions. Comparing the oscillator strengths of lines in different polarizations one would
obtain information on the nature of the lines (direct transitions, phonon-assisted ones) and
evaluate the strengths of both spin–orbit and electron–phonon interactions.

Figure 5. The possible energy-level diagram and dipole-allowed (solid lines) and phonon-
assisted (dashed lines) optical transitions in the (GaAs)2(AlAs)2 [001] SL.

Similar analysis of polarized-light optical spectra could be made in the case of the
(GaAs)m(AlAs)n SLs with greaterm andn.

Summing up, we can say that only experiments could decide in favour of a particular
model of band-structure calculations. Nevertheless, when comparing the obtained results
with the experimental data one should take into account not only the possible uncertainties
arising from the theoretical approximations but also the imperfections of actual SLs. Both
the group-theory results and band-structure calculations clearly show that the optical spectra
are very sensitive to any variation of SL geometry. The actual structures can differ from the
adopted model for different reasons. For example, the lattice-parameter difference between
GaAs and AlAs bulk crystals can induce electron energy shifts. This is particularly important
if one takes into account the role of the substrate [9]. Besides, the interface roughness can
locally vary m andn by one or several units and thereby change the SL symmetry.
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5. Conclusion

Summing up, the main results of this paper can be formulated as follows.

(i) The (GaAs)m(AlAs)n [001] SLs belong to two crystal families specified by space
groups D5

2d and D9
2d depending on whetherm + n is even or odd. In both cases, there are

several subfamilies differing by odd or even numbers of monolayers in both barriers and
wells. The main difference between these subfamilies is the interchange of occupation of
the same Wyckoff positions by As and Me (Ga, Al) atoms.

(ii) When one goes from one SL to another, the variations of unit-cell geometry resulting
in rearrangement of atoms over the Wyckoff positions lead to drastic changes in symmetry of
electron and phonon states and in contributions of particular atomic orbitals in the electron
states. The latter results in the localization of particular electron bands within either the
barriers or the wells. All these changes manifest themselves in optical spectra mainly due
to a change of the symmetry of the conduction-band bottom state.

(iii) The selection rules have been derived for both direct and phonon-assisted transitions,
the spin–orbit interaction having been taken into account. The latter may be of great
importance in short-period SLs. The analysis of the selection rules, results of more reliable
band calculations, and the data of polarized-light optical experiments will allow us to create
a more precise picture of the electron-band structures of these materials.
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